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Precision Viticulture and Digital Terroirs:

Investigations into the application of information technology in Australian vineyards

Chapter 8:   Development of a fuzzy logic model for the prediction of
“total” grape quality from multiple must attributes

SECTION 1: A REVIEW OF LITERATURE - The “Quality” question

The relative availability of  yield monitors compared with quality monitors has resulted in PA to date
being driven primarily by improvements in management with respect to quantity.  The absence of
quality monitors is not due to the lesser importance of the management versus quality issue.  Rather
it is due to the need for more complex sensor technologies to measure quality coupled with an
ambiguity in what is quality and the best way to measure it.  The issue of improved quality is as
siginificant or even more so in some crops than improved quantity.  Almost without exception there
is a pricing gradient in all agricultural produce based on indicative quality measurements.  For example,
wheat is graded according to protein content and disease content, lucerne hay according to nutritional
status and weed seed status, cotton according to fibre length and strength, winegrapes according to
the sugar content, pH and titratable acidity of  the must and fruit according to flavour and appearance.
If  profitability is a function of  product quality then quality information should form an important
data layer in any site-specific production system.

There are several aspects to the “quality” question in relation to PA and PV.  Firstly what is meant by
“quality”?  Secondly are current measurements of  “quality” applicable to PA or is the development
of new or alternative methodologies required?  Thirdly are these measurement systems compatible
with and robust enough for real-time monitoring?  Finally how can the quality data be analysed and
interpreted to identify best management practices from the information received?

8a.1 The Meaning of Quality

The dictionary definition of  quality (Collins Australian Pocket Dictionary (1981)) indicates that
quality has a variety of meanings including

- A characteristic attribute

- A degree of excellence

When applied to agricultural systems these definitions are somewhat vague and thus inadequate.
Giomo et al. (1996) have proposed some alternative definitions for agriculture.  The first is a production
definition and the second an economic definition.

Definition 1: “Quality is the whole of those properties and characteristics of a product and/or a
service which combine to meet the consumers requirement”.

Definition 2:  “Quality is not only a property but also a cost, which can be a burden on the production
and consumption”.

In general a producer is attempting to maximise the value of the produce by tailoring it to consumer
requirements, after all the “consumer is always right”.  Thus traditional management practices during
production are geared towards producing quality as defined by Definition 1 above.  From a business
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perspective the second definition is sensible as it identifies that the quality of the produce is linked
to the quality of the production system.  Thus an improvement in end-product to fit consumer
demands is not necessarily an improvement in quality if the production system is degraded in the
process.  As environmental auditing becomes more and more common, if  not law, this economic
definition will take on more importance.  The economic value of the “quality” of the production
system is already being shown in the premium offered for “organic” foodstuffs in western countries.
For the continued development of  the Australian wine export market, particularly in European
markets, the demonstrability of  high-quality production systems i.e. clean green vineyards, should
be a major goal for the industry as a whole (Reedman, 2001).  The failure to be proactive in this area
could lead to a serious loss of market share overseas (Reedman, 2001).

For this research chapter (Part B) the production definition is used with an emphasis on how grape
properties combine to meet consumer expectations.

8a.2 The Determination of  Quality  (Quantifying Quality)

Having established how to define quality there is a need to be able to measure it.  Traditionally the
quality of  a product has been performed on a representative sample due to the fact that it is often
difficult to test all of the product, especially in broadacre crops which have a  low value per single
unit.  In crops where the value of a single discrete unit is relatively high and inexpensive measurements
techniques have been developed, the testing of individual product is more commonplace for example
NIR analysis of  sugar content in temperate fruits at a rate of  3 pieces per second (Kawano, 1994).  In
vineyards quality is currently measured on composite samples from within a block or vineyard (so
results are averaged across blocks).  This approach is necessitated by the cost and particularly time
needed for current grape quality analyses.

Using the definitions of Giomo et al., (1996) “quality” is a very holistic concept encompassing a wide
variety of  product and production attributes.  As mentioned previously little attention is currently
afforded to the qualtiy of the production system in agriculture and this review will focus on the
quality of the product.   As quality is often a function of a multitude of product characteristics
generally indicator variables are used.  There are a variety of reasons why this may occur;

1) a quality attribute(s) is dominant
2) it is cost prohibitive or too difficult to analyse all potential quality attributes
3) the dominant quality variable(s) is difficult or expensive to measure and a correlated property

is cheaper/easier.

The use of an indicator variable relies on a calibration between variables and/or with consumer
preference.  These calibrations may not be robust enough to encompass all varieties and all production
systems, thus disadvantaging some and advantaging others.  In particular the ability to link consumer
preferences with quality measurements is vital to understanding how production can be altered to
improve quality.  Research to data  indicates that the robustness of  generic grape quality models,
particularly between varieties but also regions, may be problematic (Esler et al., 2001)

8a.2.1 Quality indices of grapes/wine

It is current practice in vineyards to measure three quality indices to help viticulturists to determine
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the optimum time for harvest.  These are must pH, titratable acidity (TA) and soluble sugar content.
These three characteristics have been chosen over time due to their ease of measurement in the
vineyard and correlations with wine quality espescially in cooler climate production (Creasy, 2000).
However Jackson and Lombard (1993) identify seven key grape/must characteristics that contribute
to wine quality.  These are discussed below with reference to current measurements methods.

1. Soluble Sugar Content  (SSC).  This is measured traditionally using a hydrometer to determine
sugar content from the density of the must.  Nowadays must SSC is more commonly measured
using a handheld digital refractometer.  There are several different scales used for the measurement
of SSC.  The three most common being Brix°, Baume and Oesche.  SSC is an indication of the
potential alcohol percentage and residual sugars (sweetness) of the final wine (Jackson and
Lombard, 1993)

2. pH.  Wine pH is considered to be limiting if it is >3.6.  Lower pH tends to create a more
chemically and biologically stable wine with lower microbial activity producing a more even and
controllable sugar and malate fermentation.  Higher pH leads to decreased colour intensity in
reds and often more ‘browning’ in white varieties.  As pH increases so does microbial activity
producing unwanted fermentations that may affect the colour and/or flavour of  the wine.  As
well higher pH binds and inhibits the bacterioant SO2 further increasing microbial activity (Jackson
and Lombard, 1993).

3. Titratable Acidity.  This is another measure of  the content of  acids in the must and is considered
to be best between 6-10g/L.  Problems with TA can be corrected in the vinification process
through acidification/deacidification.  Low TA is often associated with high alcohol content and
a burnt bitter and coarse after taste (Marais, 1987).  The two dominant acids are tartaric and
malic which can be independently measured enzymically, or with HPLC (Jackson and Lombard,
1993)

4. Monoterpenes.  These are the dominant flavour compounds in wine.  There are two types, free
volatile terpenes (FVT) and potential volatile terpenes (PVT).  FVT are the terpenes that can be
immediately detected by taste and smell whilst PVT are considered to be a flavour reservoir and
become detectable with the aging process (Reynolds 1997).  Terpene content is usually measured
using gas chromatography/mass spectroscopy (Pollnitz et al., 2001).

5. Potassium.  This is important as it tends to bind tartaric acid into potassium tartarate thus reducing
the TA of the must (Jackson and Lombard, 1993).  High K levels have also been associated with
poor colour in red wines (Somers, 1975)  Potassium has traditionally been mesured using an
Atomic Absorption Spectrometer (Gillespie, 2003) however recent studies have shown that K
can also be measured in plant tissue using NIR spectrospy (Ciavarella and Batten, 1998).

6. Anthocyanins.  Anthocyanins are found predominantly in the skin of  the fruit.  They are especially
important in red wines as they are the primary colouring compounds in the must.  The diglucosides
of malvidin, petunidin and cyanidin are predominantly responsible for the red colour in wine
(Ballinger et al., 1974).  They are measured using HPLC or the wet chemistry method of Willams
(1985).
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7. Phenolics.  These are derived from the skin, seed and rachis rather than the flesh of  the fruit and
are more important in red wines.  They are flavour determinants and like anthocyanins can be
measured using HPLC (Jackson and Lombard, 1993) or optical fibre evanescent field absorbance
(FIFA) (Lye et al., 2004).

As well as these individual characteristics some research has been done on ratios between individual
characteristics.   Coombe et al. (1980) developed a ripeness ratio that links berry pH and sugar content
while more recently Ilane et al. (1996) derived the glycosyl-glucose (G-G) assay which provides an
indication of the ratio between influential and non-influential flavour compounds in the must.  The
G-G assay is now commonly used in Australian viticulture (Gishen et al., 2001).  Mixed approaches
have also been reported where measurement techniques are used conjointly to improve quality
prediction.  Moio and Etievant (1995) have used gas chromatography to separate volatile components
prior to an olfactory rating by an expert sniffer.

8a.2.2 Quality and the Consumer

For viticulture the relationship between the consumer (winery) and producer (vineyard) is fairly strong
with the winery often contracting grapes with specific quality attributes.  The grower then either
meets these specifications to gain the best price or is penalised with reduced prices.  It is the connection
of  these specifications with the end consumer’s requirements that is more difficult (Gishen et al. ,
2001).  The relationship betwen wine quality and the consumer is fairly unique within agriculture.
Consumer preferences for wine tend to be dynamic thus wine and therefore grape quality can also be
dynamic.  Wine quality is subjective and often relates to the tasters frame of view and personal
preferences.  Consumers of  wine also range enormously in their experience and perceptiveness which
influences their rating.  The influence of  marketing, expert opinions and wine competitions also
tends to shape consumer preferences (Gishen et al., 2001). Consumer sensory preferences can be
determined statistically (Lesschaeve et al., 2001), however this is rarely done with vigenerons often
producing wine to their preference rather then seeing if their product meets market requirements
(Gishen et al., 2001).  The rise of “brand” wines for export market will place new emphasis on
understanding consumer tastes as companies will not only be looking to produce a consistent quality
of product but also ensuring that this quality adapts to changing consumer preferences (Reedman,
2001).

8a.3 Real-time sensing of Quality

The methods of analysis outline above are generally not viable for measurement of on-the-go grape
quality, for example, the use of  a hydrometer for determination of  sugar content, gas chromatography/
mass spectroscopy for terpenes.  However there are other ways of  measuring these characteristics,
such as Near-Infrared Spectroscopy (NIRS), which have potential for real-time sensing.  In most
agricultural commodities there exists a challenge to develop quality sensors that are applicable for
site-specific mapping either pre–harvest or at harvest.  This may take time as many quality tests are
industry standard and change is often hard to implement.  Despite this the fairly rapid adoption of
new technology, particularly NIRS, in the grains and wine industry indicates that change is possible.
At the moment such technology is applied only on representative samples at collection depots (e.g.
siloes or wineries) however the ability to map quality should expedite the movement towards the use
of  such technology in on-the-go real-time sensors.
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The ideal situation is to real-time sense quality at the same time as yield.  Thus on-the-go quality
sensors need to be robust enough to be attached to harvesting equipment.  Alternatively quality can
be sensed just prior to harvest either as point data or continuously.  The resultant quality map can be
incorporated into the harvesting system to segregate yield.  Perhaps, until the development of  reliable
real-time quality sensors, this may be the preferred option.  This approach using prior information,
rather than on-the-go data, has already been shown to be viable for selective harvesting (Johnstone et
al., 1998, Penn 1999,  Carothers  2000, Bramley et al., 2003)

The development of quality sensors will necessitate the development of decision support systems
(DSS)  that are able to segregate yield according to the information obtained from the sensors.  The
incorporation of a quality sensor(s) with yield monitor produces new challenges involving how the
data from multiple sensors is fused and interpreted.  The first part of this section looks at possible
sensor technology and the second at the issue of  multi-data fusion.

8a.3.1 Types of Sensors

There are a wide variety of techniques that can be used to objectively measure the chemical and
physical attributes of grapes or must.  The difficulty in designing sensors lies in a) the development
of  robust calibration curves that work well outside of  the laboratory environment and b) the engineering
problem of  sensor mounting and sample presentation sensor.  Currently the wine industry is focusing
on NIRS and the development of  calibration curves (Gishen and Holdstock, 2000, Gishen et al.,
2001) for use in wineries rather than vineyards.  It is expected that the knowledge gained from the
winery will be adapted for the vineyard at a later stage.  The following section highlights some of the
potential approaches that could be taken for sensor development with an emphasis on the current
NIRS approach.

Light refraction – Refractometry has already become the industry standard for measurement of SSC
in must with several commercial types of digital refractometers available on the market.  Unfortunately
refractometry requires a debris and bubble free solution to accurately measure SSC thus sample
preparation and delivery o the sensor is of utmost importance.  If these problems are overcome then
refractometry is capable of  producing accurate results. Inhouse research by Pellenc Ltd indicates that
an on-the-go refractometer SSC sensor is viable (Bruno Tisseyre, ENSAM, Montpellier pers. comm.).

ISFET/ENFET – Ionselective Field Effect Transistors (ISFETs) and Enzyme Field Effect Transistors
(ENFETS) have been around for several decades but are now becoming more popular as the
possibilities for their use are becoming better understood and more feasible.  ISFET/ENFET sensors
are able to detect a large range of both inorganic and organic compounds depending on the particular
detector reagent or enzyme used.  Work on an ISFET (Seo et al., 1996) and ENFET (Shul’ga et al.,
1994) Glucose sensor shows the possibility for the use of these sensors in detecting must sugar
content.  ISFETs also exist for the detection of  potassium and pH in solution and are commercially
available.  Robust ISFET pH sensors have also been designed for the direct measurement of grape
pH (Sentron Inc, 2001) in the field however no applications have been tried in real-time situations.

Electronic noses -  There are a wide variety of chemosensor technologies that have been developed
for use as electronic noses.  These include conductometric chemosensors (metal oxide semiconductors
and conducting polymers), chemocapacitors, potentiometric chemosensors (e.g. Metal Oxide
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Semiconductor Field Effect Transistor), gravimetric chemosensors (Quartz Crystal Microbalances),
optical chemosensors (fluorescent sensors), calorimetric sensors, and amperometric sensors (Pearce
et al., 2002).  Electronic noses are designed to detect complex aromas using sensor arrays.  They are
of great potential as the organoleptic (aroma) properties of the must is the most sensitive indicator
of final wine quality (Scienza et al., 1996).

Of  the chemosensors mentioned above the Metal Oxide Semiconductor Field Effect Transistors
(MOSFETs) and Quartz Crystal Microbalances (QCM) sensors have been trialled as non-invasive in-
line monitors.  MOSFETs have been used for process monitoring of  E. coli fermentations (Haugen
and Bachinger in Pearce et al., 2002), for the classification of  fruit juices (Winquist et al., 1999) and
assessment of  the sensory appeal of  coffee (Pardo and Sberveglieri, submitted)  while QCM sensors
have been used for food and beverage quality assurance in fresh fish (Natalle in Pearce et al., 2002).
All of  these trials have produced encouraging results.  However observe that results are improved
when the sensor output is coupled with that of an artificial tongue. The use of sensor arrays produces
a problem of  multi-sensor data fusion and this will be discussed further below.  While no research
was found during this literature review on winegrapes, the development of  the technology in other
areas should facilitate adoption in viticulture/oenology.

Near-Infra Red Spectroscopy – This is potentially the most useful tool as the NIR spectra may be
able to measure multiple quality characteristics simultaneously.  Currently most work is being aimed
at the measurement of  SSC using NIR transmission spectroscopy.  Literature exists on the measurement
of  SSC in many fruits, for example, peaches (Peiris et al., 1998), tomatoes (Peiris et al., 1998), pineapple
and mango (Guthrie and Walsh 1997), pawpaw (Greenshill and Newman, 1999) and nashi (Tanaka
and Kojima 1996).  Most of this work has been able to predict SSC with r

2
 values greater than 0.70.

Studies by Huxsoll et al. (1995) have shown that NIR transmission spectroscopy has shown highly
positive relationships between measured and NIR predicted values of  bulk density, visual grade and
moisture content in raisins.   This work has recently been extended into winegrapes (Gishen and
Holdstock, 2000).

In particular extensive progress has been made recently in the use of spectroscopy for quality
determination at the winery.  The advantage of  spectroscopic analysis is that only the one sensor,
recording at different wavelengths, is needed to measure a multitude of  properties.  Instruments
such as the Foss WineScan FT120 have been developed to test a variety of  must and wine quality
factors.  NIRS calibration curves have been established for ethanol, total acid, pH, volatile acidity,
reducing sugars, tartaric, malic and lactic acids, red grape colour and G_G assay with good correlations
for all properties (Gishen and Holdstock, 2000, Gishen et al., 2001 and Kupin and Shrikhande,
2001) except the organic acids (Kupina and Shrikhande, 2001).  Calibrations for pH, total anthocyanins
and SSC have been developed for different varieties and different regions within Australia as well as
a generic calibration for all varieties pan-Australia (Esler et al., 2001).

NIRS research to date has focused on the use of transmission spectroscopy where the sample beam
is passed through the sample before being analyzed.  This requires a constant sample preparation
which is suited to laboratory analysis but not to field measurement.  An alternative form of  spectroscopy
is diffuse reflectance spectroscopy.  This method intercepts and analyses the reflected radiation from
the surface of  the object.  Thus the opportunity exists to derive information on the content of  a
substance e.g. must or grapes by scanning the surface of  the substance.  This will minimize or negate
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the need for any sample preparation prior to analysis.

Some problems with the use of  this methodology have been identified in the literature.  The principle
concern outlined by Peiris et al., (1999) is the spatial variability of  sugar within the fruit and the
inability of  NIR spectroscopy account for this variability.  Thus a standard point of  measurement or
multiple scans are needed to allow comparisons between fruit.  The small size of  grapes compared to
other fruit measured, e.g. apples and peaches, may negate this effect.

For repeatable accurate field results, either the sample must be delivered in a homogeneous manner
to the sensor or the calibration must be robust enough to account for variability in the scans.  Given
the inherent high variability between vines and even within bunches (Dunn and Martin, 2000) a
statistically valid sampling protocol is require to account for this variability.  The number of
measurements required for a significant representative sample will depend on the rate of scanning
(i.e. the number of wavelengths) as well on the area scanned.  Error sources and intrinsic non-
linearities such as debris (dust and leaf litter), fluctuating lighting, variable nature of the sample,
disease/pest artifacts etc need to be overcome (Sanchez et al., 2000).  Some of these errors can be
overcome through engineering solutions and others through statistical manipulation of  the data (e.g.
PLS, Genetic Inside Neural Networks analysis) (Sanchez et al., 2000).

Guthrie et al. (1998) found that the NIR calibration procedure was not robust enough to be used
between summer and winter crops of  pineapple and between varieties.  This may have a significant
influence in grapes due to the large number of  varieties harvested and in particular the difference
between white and red grapes.  Research from the AWRI (Esler et al., 2001, Gishen et al., 2001)
indicates that this may not hold true for winegrapes however varietal and regional calibration models
are being developed.  These calibrations have been shown to be robust when transfered between
similar standardised spectrometers.  However the simultaneous standardisation of  multiple
spectrometers from different manufactors has been identify as a potential problem to the successful
use of  the technology (Gishen et al., 2001)

8a.4 Multiple quality indicators and multi-data fusion

The ability to measure and geo-reference crop information is just one step of  a site-specific
management system.  As discussed in Chapter 1, Precision agriculture is not just data collection, it is
a holistic, cyclical approach involving measurement (data collection), analysis (data manipulation),
interpretation (decision support) and action (variable rate input/management) which is repeated
every production cycle (see Figure 1.2).  As indicated earlier grape/wine quality is multiparametrical
thus the collection of multiple individual quality indicators may not and usually does not provide an
actual “total” quality estimate.  Data must be analyzed and interpreted to achieve a true quality
measurement.  From this literature search there is a general lack of understanding and research in
agronomic disciplines into how to analyse and interpret multi-sensor data.  However research into
multi-sensor data-fusion is progressing elsewhere particularly in the area of  robotics and mechatronics.
(For examples in the field of  robotics readers are directed to the Proceedings of  the  NATO Advanced
Study Institute on Multisensor Data Fusion, Hyder and Waltz (2002)).  For many crops the issue of
multisensor data fusion is minor as there is one dominant quality indicator e.g. protein in grains.  For
viticulture, quality is a much more complex problem.  Not only is quality a function of a variety of
different quality characteristics that may be uncorrelated (Creasy, 2000) but the relative weight
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(importance) of each characteristic to the overall quality may differ between varieties as well as
within varieties depending on the end use of  the grapes.

The short history of Precision Agriculture has already shown that the main impediment to uptake is
a lack of  decision support for the technology (Searcy, 1995).  Given the successful development of
an on-the-go grape quality sensor(s) a decision support mechanism needs to be in place to facilitate
the adoption of  the technology.

At the winery a decision must be made, based on field measurements, field tasting and winery analysis,
on the fate of grapes and the potential quality of the resultant wine.  Whilst maturity and to a lesser
extent quality is determined analytically through Brix°, pH, titratable acidity measurements and
asociated indices (Creasy, 2000), the decision on the final quality is still strongly influenced by
traditional heuristic expert systems (e.g. a taster tasting in the vineyard, or traditional response from
a block) (Guilbaud-Oulton pers comm., 2001).  Such undeterministic human expert systems may be
highly effective in selecting premium quality wines but from a scientific point of view they are
flawed.  Measurements are subjective to the training and preference of the taster and no measurement
of  imprecision is obtained thus risk assessment is difficult to determine (Russo and Rampani, 1994).

The first step in the building of a Decision Support System (DSS) often requires data manipulation
and/or reduction.   It is likely that the output from the sensor(s) is either too large, in the wrong
format or at the wrong scale to be used as a variable in a decision making model, e.g. a raw NIR
spectra, or that each sensor has differing performance charactersitics which need to be corrected
(Chicolea and Dickstein, 2000).    A wide variety of signal processing and statistical techniques
exists for data reduction including principal components analysis (PCA), discriminant function analysis
(DFA), partial least squares (PLS), multiple linear regression (MLR), cluster analysis (CA), nearest
neighbour analysis (NN) and Genetic Inside neural Network (GINN) (Pearce et al., 2002).  Chicolea
and Dickstein (2000) have also published a list of  rules and criteria for data fusion, especially in
relation to non-destructive testing.  It is not my intention here to describe these methods but to
identify that data manipulation/reduction is a principal step in a DSS.

The second step is to create a model that accepts the sensor data and is able to produce a decision.
Examples of  multi-sensor models already exist in agriculture e.g. the three stage fuzzy logic model of
Verma (1996) for prediction of  the optimum sell date for tomatoes and the land-cover classification
of Solaiman (1999).  Zadeh (1994) champions the idea of soft computing, instead of just fuzzy
logic, in modelling human perceptions.  Soft computing is a term used for the amalgamation of
techniques that are used in differing ways and combinations to simulate human thinking.  It is an
attempt to exploit the tolerance for imprecision, uncertainty and partial truth of  information to
achieve tractable, robust and a low cost solution.  This is a process that humans perform everyday
when making decisions. This concept can be illustrated through the process of  parking a car (Zadeh
1994).  Car parking is generally easy as the final position of the car is imprecise.  The more precisely
we specify the final position the harder it becomes to park.  The increase in precision however does
not really improve the final outcome.  Zadeh (1994) has proposed three basic components to the soft
computing approach - fuzzy logic, neural networks and probabilistic reasoning.  Since the publishing
of that paper the study of biologically motivated systems has become wide spread and other techniques
e.g.  self-organising maps (SOM), radial basis function (RBF), genetic algorithms (GA), wavelets,
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neuro-fuzzy systems (NFS) and adaptive resonance theory (ART) have been developed and expanded
(Pearce et al., 2002).  These technologies for pattern analysis are especially attractive as they have the
potential to perform incremental learning and offer self-organizing and self–stabilizing potential.
(Pearce et al., 2002)

Figure 8a.1: Diagrammatic representation of the process of multi data fusion and decision
making of winegrapes.
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SECTION 2: RESEARCH PAPER

8b.1 Introduction

A large percentage of  the Australian crush is now bottled as “brand” wines rather than vineyard
specific wines.  This changes the emphasis of  production from a unique identifiable “vineyard”
vintage to a vintage of  repeatable quality.  The rise of  “brand” wines is much more conducive to the
use of  scientific research/methods in more extensive viticultural production systems.  “Brand” wines
are often not premium thus it is economically unfeasible to exhaustively sample and categorize blocks
using expert tasters.  The increased research into and adoption of  NIRS analysis by the industry
provides the opportunity to quickly determine multiple quality characteristics.  These data could be
used to construct a hard deterministic model of  quality.  However decision making in wine production
is not a hard science and usually relies on human expertise (often described by heuristic rules) to
interpret both hard (e.g. pH, Brix°) and soft data sources (e.g. tasters assessment).  For situations
such as this, traditional deterministic and probabilistic models fail to account for the adaptive and
subjective human component in the decision (Ren and Sheridan, 1995).  In the past 30 years a variety
of  soft modelling techniques have been developed to overcome this limitation e.g. fuzzy systems,
artificial neural networks, probabilistic reasoning (Zadeh, 1994) and more recently self-organizing
maps (SOM), radial basis function (RBF), genetic algorithms (GA), wavelets, neuro-fuzzy systems
(NFS) and adaptive resonance theory (ART) (Pearce et al., 2002).

Deciding the potential of grapes is really a two-pronged question.  Firstly a decision on the quality of
the grapes must be made and secondly a decision on the potential of the wine and the effort and care
required for vinification.  These questions require different approaches.  Attempts to model grape
quality are probably best served by fuzzy systems.  While both fuzzy systems and neural networks are
applicable, the use of  fuzzy systems (e.g. fuzzy logic, fuzzy decision trees) is generally preferred
when there is not an extensive training set or there is a strong reliance on “intuitive” or “expert”
knowledge (Janikow, 1998).  Fuzzy systems try to mirror human thinking by recording expert knowledge
as linguistic variables within the model.  Linguistic variables allow expert knowledge to be incorporated
quickly and easily and tend to provide the operator with a clearer understanding of the model operation
(Russo and Rampani 1994, Janikow 1998).   A detailed model has been developed for the prediction
of  sale date and quality in tomatoes (Verma, 1996) and a preliminary investigation into the prediction
of grape quality using fuzzy sets has already been carried out in France (Tisseyre and Mazzoni,
2001).

The existing fuzzy viticulture model of Tisseyre et al. (2001) is currently applied retrospectively post-
harvest.  It is based on grape sugar content, maturity and vine vigour. The model does not need the
development of  appropriate real-time on-the-go sensors to be effective.  The methodology and theory
of these multi-sensor data-fusion models is constant regardless of whether the data is real-time or
laboratory sensed. Thus development of these models will aid growers now and also in the future.
With the successful development of robust calibrations and on-the-go quality sensors then, with the
further refinement of the existing model(s), a real-time decision support system can be quickly
developed and mounted with the sensor to record and manage the crop.  If  relationships between
proximal- and remote-sensed imagery and quality or quantity indicators can be reliably proven then
such data may also be incorporated into the model(s).  Correctly sampled geo-referenced information
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on crop parameters, e.g. bud/bunch counts, crop load etc, may also be included.  Forward thinking at
this stage will facilitate the adoption of  the technology and correct interpretation of  the resultant
information.  Integrated models will allow for vertically orientated quality predictions where models
may be run repeatedly throughout the growing season as new information comes to hand.  Thus
growers will have an indication of quality potential and spatial variability from early in the season
allowing them to perform differential management to improve overall quality.  As the season progresses
the model output should reflect the effect of with-in season management.

The second question of what sort of wine to produce is a soft computing problem that may involve
a variety of  techniques.  Given that quality is a variable parameter dependent on consumer preferences
any model of  the potential value of  wine requires a learning capability.  Thus as consumer preferences
and markets change the model is able to adapt to select the best fate of  the grapes.  Fruit quality
information needs to be combined with information on production costs, consumer preferences,
market forces to determine the potential profitability of  the wine and the risks associated with it.

Of principal concern for this chapter is the development a model for the the prediction of overall
grape quality from quality indicators.  Model development is not dependent on sensor development.
Laboratory and field measurements can be used as data sources to develop and test various models
prior to sensor development.   The final version of the model will require some co-operation with
those developing the sensor system to ensure that the model mirrors the potential output of the
sensor.

8b.2 Methods

8b.2.1 Site and sample selection

The study was carried out at the Orlando Wyndham’s Pokolbin Vineyard (latitude 32º 43’ south,
longitude 151º 14’ east)  in the Hunter Valley, NSW (approximately 180km North-West of  Sydney).
Sample sites were determined using the stratified randomised design as described by Webster and
Oliver (1990).  The strata were ‘ potential management zones’ and were obtained as follows.  An
aerial photograph of  the survey area was digitised using a Umax Mirage IIse scanner.  The red, green
and blue bands of the digital image were clustered in JMP® using hard k-means clustering (Hartigan
and Wong, 1979).  Assigning two clusters produced two distinct, fairly contiguous zones (Figure
8b.1).  The 100 samples were then divided between the two zones based on percentage area.

Of  these 100 samples, a further 10 sites were chosen randomly.  At these 10 sites nested transects
(Pettitt and McBratney, 1993) were used to ensure that the variogram was accurately represented at
short lag distances.  Samples were taken from the middle vine of  the panel, the adjacent vine, the
middle vine of the next panel and the middle vine of the 4th panel along from the original sample
(Figure 8b.2).  This produced a total of  130 vines.  Vine location was recorded by block number/row
number/panel number/vine number and direction from which row was entered (E or W).  Vine sites
were geo-referenced with a Garmin 1200XL GPS averaged for 1 min at each location and converted
to Eastings and Northings (UTM GDA) using the GEOD transformation program (LPI, 2001)  The
area of the study was 11.7 ha.
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8b.2.2 Sample preparation and analysis

Three bunches were picked from the fruit zone of  each selected vine.  Bunches high or low in the
canopy were not taken.  Bunches were crushed in a mortar and pestle and strained through a 2mm
sieve to remove coarse grape debris.  Samples were frozen immediately after crushing and analysed in
May, three months later.  Three analyses were performed, pH, TA and Brix°.  The must pH was
determined using a Radiometer analytical pH meter with a combined electrode.  Brix° was determined
using an Atago digital handheld refractometer.  Titratable acidity (mg/l equivalent of  tartaric acid)
was determined using 0.1M NaOH to an end point of  pH 8.2 (as per the standard method used by
Orlando-Wyndham (Deed pers. comm. 2001).  The mean of  the samples was adjusted to the mean
value of  the blocks, as recorded at harvest, to negate any effect of  the freezing process on the must.
An analysis of  variance was performed on the data to see if  the clustering approach had any effect on
the grape quality attributes.

8b.2.3 Fuzzy logic quality model.

The fuzzy logic model of grape quality was developed using the fuzzy toolbox extension of MATLAB
(Roger Jang and Gulley 1995).  The model utilises Mamdani’s fuzzy inference method (Mamdani,
1975) with three inputs, pH, TA and Brix°.  The fuzzy set for each input was defined by a membership
function (MF), denoting low, optimal or high input values.  The threshold values for each input were

Figure 8b.1: Aerial image of  the survey area and result of  the 2-cluster analysis showing
winegrape sample sites.

Figure 8b.2: Diagrammatic representation of a nested transect sampling scheme.  Numbers
indicate vines being sampled
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obtained from James Manners, a winemaker at Orlando-Wyndham, are shown in Table 8b.1.  Various
functions were tried to define the three MFs including (a) trapezoidal, (b) triangular and (c) gaussian
(Appendix 8.1).  Five potential grades of  fruit quality were identified – bulk, commercial, semi-
premium, premium and super-premium.  The three input fuzzy sets with three levels of membership
produced 27 if-then rules (Appendix 8.2).  The if-then rules were also formulated in consultation
with the winemaker.  For shiraz grapes in this region pH is considered the most important must
property.  The if-then rules reflect this by weighting pH above Brixº and TA.  The fuzzy output from
the model was defuzzified into a crisp number using the centroid value of the fuzzy inference system.

The potential distribution of  output from the models was tested by running different permutations
for pH, TA and Brix° values.  Values of  pH were tested at increments of  0.025 for a range of  3.4 -
3.7, Brix°  at increments of 0.25 between 19 - 26 and TA at 0.25 increments for a range from 4 - 8 g/
L.  A random subset of 50 samples was used to compare output from the models to the opinion of
the expert system (winemaker).  The distribution of the model output and the correlation of the
sample set with the expert system (winemaker) was used to identify the best performed model.

Quality Attribute MF Range

pH Low <3.5
Optimal 3.5-3.6
High >3.6

Sugar (Brix°) Low <22.5%
Optimal 22.5-24.4%
High >24.4%

Titratable Acidity Low <5.5 g/L
Optimal 5.5-6.5 g/L
High >6.5 g/L

Table 8b.1: Range of  values for individual must quality attributes.

8b.2.4 Prediction and interpolation of  grape quality and gross margin of  production

Having identified and refined the best model, the sample data were used as inputs into the model.
The resultant output was then interpolated using punctual kriging, based on a global variogram, onto

               Quality                 Price per Mg (AUD$)        Quality score

Bulk 325 0 – 25
Commercial 750 25 – 45
Semi-premium 1250 45 – 65
Premium 1600 65 – 80
Super Premium 2000 80 – 100

Table 8b.2: Quality grades and respective price and model output range.

a 3m grid using Vesper (Minasny et al., 2002).  The must properties were also interpolated with the
same method.  Maps of  individual must properties are shown in Figure 8b.6.  The results of  the
interpolation of  the model output were mapped with a continuous numerical legend (Figure 8b.7)
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and with a linguistic quality legend, shown in the inset, according to the quality definitions in Table
8b.2.  All maps were produced using ArcView® (Esri, 2001).

The gross margin was calculated (Equation 8.1) based on the average yield, as no yield maps were
available, with site-specific variable quality.  Inputs and cost of  production were considered uniform
for all parts of the production system.  Cost of production  was estimated at $5500/ha by the
vineyard viticulturists and value of  resultant grapes is according to Table 8b.2.  Average yield for the
vintage was 4.3 Mg /ha.

GM = (Yield * Price)  - Cost of production Equation 8.1

where price is dependent on quality grade (Table 8b.2)
cost of production includes both fixed and variable costs

8b.3 Results and Discussion

8b.3.1. Results of  Must analysis

Table 8b.3 shows the summary statistics for  pH, Titratable Acidity (TA) and Brix° analysis of   the
130 samples.  The pH and TA values are above optimum and the Brix° below optimum.  The high
TA and low Brix° was expected as the grapes were picked before they reached optimum maturity.  As
berries maturity TA will fall as malic acid is metabolised and the concentration of tartaric acid
declines with increased berry water uptake (Jackson and Lombard 1993).  Conversely Brix° tends to
increase as the berry becomes the preferred sink for photosynthate (Jackson and Lombard 1993).
Grape must pH also tends to increase with maturity especially in warmer climates (Jackson and
Lombard 1993) however the relatively high pH in the grapes is unexpected given the ripeness of the
grapes.  The elevated pH may be due to the unique combination of  climatic conditions for the season
or due to an external influence e.g. elevated potassium concentration in the grapes (Gladstones,
1994).

Statistic pH Brix° TA

Mean 3.81 19.08 7.30
Std Dev 0.14 1.37 0.35
Median 3.81 19.08 7.30
Maximum 4.17 22.63 8.32
Minimum 3.39 15.4 6.39
Range 0.76 7.23 1.93
N 130 130 130

Table 8b.3:  Summary statistics of  the grape must analyses

In the Hunter Valley in 2001 the period from veraison to maturity was characterized by below average
temperatures and above average rainfall.  Fruit from this part of  the vineyard was picked before full
maturity to avoid further loss from predicted poor weather, the potential onset of fungal disease and
a further increase in grape must pH.  The combination of  bad weather and an early harvest produced
low quality grapes.
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8b.3.2  Significance of  Clustering

The grape sampling design was based on a randomized stratified design derived from cluster analysis
of  an existing colour aerial photo.  Traditionally yield (vigour) and quality have been considered to be
inversely related to each other (Creasy, 2000).  However recent site-specific studies have shown that
quality attributes may not be statistically different between areas of  different yield/vigour (Bramley,
2001,  Ortega and Esser, 2003).  The validity of using this random stratified sampling system was
tested by ANOVA of  the measured grape charateristics and the total quality prediction between the
predicted clusters.  The comparison of  the spread of  the data, mean and standard deviation is shown
in Figure 8b.3 and the cluster means and probability statistics from the ANOVA is given in Table
8b.4.

pH Brix° TA Total Quality N

Cluster 1 3.828 19.329 7.285 22.479 52
Cluster 2 3.795 18.910 7.312 22.504 78
Prob > F 0.194 0.086 0.664 0.9916

Table 8b.4: Cluster means and summary of  the ANOVA of  winegrape attributes and total
quality between the two clusters.  (Italics indicate significance at the 0.1 level)

All three grape characteristics and  the predicted total quality were not sifgnificantly different between
the two clusters at the 0.05 level.  Brix° was significantly different at the 0.1 level.  The lack of
significance reinforces the results from concurrent studies that yield and quality do not show any
strong constant relationship.   Given these results randomized stratified sampling based on plant
vigour imagery may not be suitable for studies of  winegrape quality.  Despite these findings the use
of  plant vigour imagery has been shown to be effective for selective harvesting (Johnston et al., 1998,

Figure 8b.3:  Graphical results of  ANOVA of  winegrape properties and toral quality showing
spread of the data, cluster means and Students t-test comparison.
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Bramley et al., 2003, Carothers, 2000, Penn, 1999).

8b.3.3 Test of  the model

Figure 8b.4 shows the distribution of  output from the hypothetical permutations of  must properties
for each model.    The models with triangular and trapezoidal MFs ranged from 10 to 90 and the
gaussian MF  model from 8 to 84.  The gaussian MF model had very few permutations that produced
total grape quality higher than 75 and was discarded.  The trapezoidal  model produced a more even
spread of outcomes than the triangular model.  This is consistent with previous work (Pedrycz,
1994) who found that triangular and traezoidal models produced the best estimation of the possibility
distribution when modelling an “expert” based system.

 Figure 8b.5 shows the output from the three models  versus the validation set from the winemaker .
The triangular and trapezoidal models produced a better fit (r2=0.58) than the gaussian model (r2=0.45)
(N.B. the linear regressions are fitted with the line passing through the origin).  The trapezoidal model
was chosen as the best model based on a more even spread of  output from the permutation set.

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

A B C

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

A B C

Figure 8b.4: Distribution of  permutation output from the three models ((A) triangular, (B)
trapezoidal and (C) gaussian.

8b.3.4 Determining site-specific quality

Individual must properties are displayed in Figure 8b. 6 ((a) pH, (b) Brix°, and (c) Titratable acidity
(TA)).  The correlation matrix  between the quality predictions and individual must properties for the
130 sample points are given in Table 8b.5.
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Figure 8b.5: Comparison of  output from the fuzzy models vs. expert opinion

When applied to the 130 sample points the trapezoidal MF  model returned quality scores ranging
from 10.6 to 61.3 with a mean of  22.5.  This value places the fruit in the bulk category (Table 8b.2).
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However only 73% of points were located in this grading with 19% graded as commercial and 8% as
semi-premium.

The corelation matrix shows that all three attributes are negatively correlated with final quality.  pH
and TA show the strongest correlations with quality which is expected as the model is weighted
towards these properties.  A negative correlation is generally expected for pH and TA.  A high must
pH tends to produce unstable wines with higher microbial activity and weaker colour (Jackson and
Lombard 1993). Titrable acidity tends to be excessive following veraison and decreases with maturity
(REF).   Brix° however is generally positively correlated with total quality (Gladstones, 1992).

While pH and TA are both negatively correlated to total quality they exhibit no relationship with
each other.  The results show that Brix° is positively correlated with pH which is expected as they
both tend to increase during maturity (Jackson and Lombard, 1993).  This positive correlation coupled
with the emphasis on pH and TA in the model, the unusual season  and the poor development of
grape sugar probably explains the anomolous correlation between Brix° and Quality in Table 8b.5.

pH Brix° TA Quality

pH 1.00 0.55 0.03 -0.56
Brix° 1.00 0.02 -0.24
TA 1.00 -0.44
Quality 1.00

Table 8b.5: Correlation matrix for individual must characteristics and overall predicted quality
(from model).

The absence of  strong relationships between must properties e.g. TA and pH or TA and Brix° in this
study, is not uncommon in winegrapes (Reynolds 1997, Bramley, 2001, Creasy, 2000)  and highlights
the reasons why multiple “quality” indicators are required.  The reason for this lack of relationship is
due to the wide range of  external factors that can affect the physiology of  the berry – either directly
or indirectly by influencing vine-growth parameters (Jackson and Lombard, 1993).

8b.3.5  Mapping of  fruit quality

The quality map resulting from the interpolation is shown in Figure 8b.7.  This has been simplified in
the inset as a map of  grape grade (using values from Table 8b.2).  After interpolation the mean
quality value is 23 however 71% of the vineyards shiraz was considered to be of bulk quality and
29% of  commercial or greater.

Visually the difference between the quality map and the individual must property maps highlights the
need for a picture of  overall quality when considering differential harvesting.  The maps visualize the
differences observed in the correlation matrix (Table 8b.5).

This analysis however has not considered the taster’s opinion of  the blocks.  Taste is the best indicator
of quality however it is a subjective variable and difficult to quantify hence the reliance on quantifiable
properties such as pH, Brix° or TA.  Prior to harvest, winemakers physically visit vineyards to taste
and grade individual blocks.  While it is not feasible to do this site-specifically a general knowledge
of the mean “taste” of the block will aid in any quality model.  Grapes with different taste grades but
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Figure 8b.6:  Interpolated maps of  individual must properties.
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identical pH, Brix° and TA will have a different quality grade.

Without this additional information on “taste” the output from the model is incomplete.  According
to the output from the model the grapes produced were predominantly of bulk grade.  The blocks
however had a good taste and despite the early harvest and poor season still produced primarily
commercial fruit. The next step in the development of  the fuzzy model proposed here is the inclusion
of  the taster’s opinion into the model.

8b.3.6 Gross-margin analysis

The mean quality of  the blocks indicates bulk quality grapes.  However with  over a quarter of  the
vineyard able to be graded to a higher category it is obvious that there is an opportunity for differential
harvesting to improve profitability.  The potential for differential harvesting is also helped by the
large discrete areas of  higher quality grapes that minimizes the cost of  differential harvesting (re
inset of  Figure 8b.7).  The area of  semi-premium grapes is considered to be too small for differential
harvesting and recatergorised into the commercial grade.

The gross margin analysis for uniform harvesting shows a loss of  $4,102.5 ha-1.  Differential harvesting
into bulk and commercial lines (according to the inset in Figure 3) shows a loss of $4,102.5 ha-1 in the
bulk grade areas, $2,275 ha-1 in the commercial grade areas and $3,571 ha-1 overall.  This figure does
not account for the increased cost of  differential harvesting however an average saving of  ~$600 ha-

Figure 8b.7:  Interpolated map of  overall quality prediction from the fuzzy trapezoidal MF
model (showing simplified inset of wine grades).

Metres
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1 will easily offset this additional cost.  The potential savings associated with differential harvesting
in this study are similar to those reported elsewhere (Bramley et al., 2003, Carothers, 2000, Penn,
1999).

8b.4 Conclusions

The aim of this chapter was to develop a model to help grapegrowers and winemakers to understand
the interaction of individual quality parameters on “total” quality and the spatial variation of individual
and toatl quality.  This information should help improve the winemaking decision support system
The use of trapezoidal and triangular membership functions produced the best fuzzy models for the
prediction of  overall grape quality.  All models will benefit from the inclusion of  additional information
especially the score given pre-harvest by an expert taster.  The models represent a step towards a
decision support system for grape quality.  Further research needs to be conducted to verify the
output from the model e.g. micro-vinification.

The output from the fuzzy model produced a map of overall quality that was different to the individual
quality parameters.  The vineyard produced predominantly bulk grade grapes.  A gross margin analysis
for uniform versus differential harvesting showed a saving of  ~AUD$600 per hectare for differential
harvesting.
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Appendix 8.1 - Membership Functions for pH

                 

Low  Optimum High

Trapezoidal

Gausian

Triangular



228

C
H

A
PT

E
R
 V

III
    

   P
R

E
D

IC
TI

N
G
 “T

O
TA

L”
  G

R
A

PE
 Q

U
A

LI
TY

 FR
O

M
 M

U
LT

IP
LE

 G
R

A
PE

 A
TT

R
IB

U
TE

S
Precision Viticulture and Digital Terroirs:

Investigations into the application of information technology in Australian vineyards

Appendix 8.2 -  If-then rules for fuzzy grape quality model

Antecedent Consequent
If (pH is low) and (Brixº is low) and (TA is low) Then (grade is bulk)
If (pH is low) and (Brixº is low) and (TA is high) Then (grade is bulk)
If (pH is low) and (Brixº is high) and (TA is low) Then (grade is bulk)
If (pH is low) and (Brixº is high) and (TA is high) Then (grade is bulk)
If (pH is high) and (Brixº is low) and (TA is low) Then (grade is bulk)
If (pH is high) and (Brixº is low) and (TA is high) Then (grade is bulk)
If (pH is high) and (Brixº is high) and (TA is low) Then (grade is bulk)
If (pH is high) and (Brixº is high) and (TA is high) Then (grade is bulk)
If (pH is low) and (Brixº is optimum) and (TA is low) Then (grade is commercial)
If (pH is low) and (Brixº is optimum) and (TA is high) Then (grade is commercial)
If (pH is low) and (Brixº is low) and (TA is optimum) Then (grade is commercial)
If (pH is low) and (Brixº is high) and (TA is optimum) Then (grade is commercial)
If (pH is high) and (Brixº is optimum) and (TA is low) Then (grade is commercial)
If (pH is high) and (Brixº is optimum) and (TA is high) Then (grade is commercial)
If (pH is high) and (Brixº is low) and (TA is optimum) Then (grade is commercial)
If (pH is high) and (Brixº is high) and (TA is optimum) Then (grade is commercial)
If (pH is optimum) and (Brixº is low) and (TA is low) Then (grade is semi-premium)
If (pH is optimum) and (Brixº is low) and (TA is high) Then (grade is semi-premium)
If (pH is optimum) and (Brixº is high) and (TA is low) Then (grade is semi-premium)
If (pH is optimum) and (Brixº is high) and (TA is high) Then (grade is semi-premium)
If (pH is optimum) and (Brixº is optimum) and (TA is low) Then (grade is premium)
If (pH is optimum) and (Brixº is optimum) and (TA is high) Then (grade is premium)
If (pH is optimum) and (Brixº is low) and (TA is optimum) Then (grade is premium)
If (pH is optimum) and (Brixº is high) and (TA is optimum) Then (grade is premium)
If (pH is optimum) and (Brixº is optimum) and (TA is optimum) Then (grade is superpremium)
If (pH is low) and (Brixº is optimum) and (TA is optimum) Then (grade is semi-premium)
If (pH is high) and (Brixº is optimum) and (TA is optimum) Then (grade is semi-premium)


