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Precision Viticulture and Digital Terroirs:
Investigations into the application of information technology in Australian vineyards

Chapter 6:  Improving the accuracy and spatial resolution of vineyard soil
 maps using regression kriging

6.1 Introduction

As illustrated in Figure 5.1, data from viticultural/horticultural soil surveys has traditionally been
presented in point form at each pit site rather than as a raster map.  The use of  75-100 m grids
produces point maps with a lot of empty space.  In recent times this has given way to raster maps
with a pixel size equal to the survey grid.  This provides no additional information but, while still
coarse, is easier to visualize.  As outlined in Chapter 5, this approach is due to the use of the linguis-
tic variables in the survey, a general lack of  knowledge in the industry about spatial interpolation
techniques and the fact that maps have always been presented this way so people have become use
to them.  The current point maps produced have two main limitations 1) it is difficult to visual the
data on the map and 2) the scale is incompatible with other data layers.  The protocol presented in
Chapter 5 has addressed some of these problems, however, the level of detail in the maps is still
restricted to the density of  the soil survey.  Analysis of  within vineyard production variability (Chap-
ter 4) indicates that considerable variation in production, particularly yield, occurs at ranges <75 m.
The introduction of precision viticultural technologies, such as yield monitoring, remote sensing
(aerial or satellite), electromagnetic induction (EMI) surveying and GPS-based elevation surveying,
is now providing soil and production information at much finer scales than the 75-100 m grid soil
survey.  This new ancillary data may allow for more accurate mapping of  environmental parameters
and improved efficacy of vineyard and irrigation design.  Of particularly interest in this study is the
recent adoption of  soil apparent electrical conductivity (ECa) and GPS-based elevation surveys prior
to vineyard design.  The potential benefits of this data in helping to describe plant environs or
“digital terroirs” is illustrated previously in Figure 5.10.

While the industry has a widely-used protocol for soil surveying and interpretation there is no proto-
col on the collection and analysis of these new ancillary data.  Currently new fine-scale ancillary data
is only visually compared with the soil survey data to confirm the soil pit findings.  A lack of  stand-
ards in cartography and ground-truthing  has created some confusion and an over-expectation in
what the ancillary data can provide.  This in turn has lead some surveyors to ignore or distrust
ancillary data (McKenzie, 2000).  With correct analysis and a defined protocol this confusion should
be avoided and the value of  the ancillary information maximised.  Ancillary data sets, particularly
elevation, may be useful for soil prediction even though they are not direct soil measurements.  This
is due to the influence of  many factors on the development of  soil profiles.  This was first outlined by
Jenny (1941) with the CLimate Organism Relief Parent material and Time (CLORPT) model of soil
pedogenesis.  Building on the CLORPT model, McBratney et al. (2003) have proposed a Soil (or soil
attributes), Climate, Organisms, Relief (topography), Parent material, Age (time) and Space (n)
(SCORPAN) model as a basis for soil digital mapping.

Multivariate geostatistical techniques, such as universal kriging, co-kriging and regression kriging,
have been developed over the past 30 years that allow multiple data layers to be combined and
interpolated across an area even if the data are not collected at the same scale (McBratney et al.,
2000).  This chapter focuses on regression kriging that has been shown to be most suited to local-
scale soil mapping when a large number of predictor variables are available (Odeh et al., 1995,
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Bishop and McBratney, 2001, Knotters et al., 1995).  Co-kriging with more than 4-5 variables is
problematic as the interpolation becomes increasing complex as more variables are added to the
model (Odeh et al., 1995).  Regression kriging also provides more flexibility in the interpolation as a
variety of different regression techniques may be used,for example linear models, generalised linear
models (GLM), generalised additive models (GAM), regression trees or neural networks (McBratney
et al., 2000).

The aim of  this chapter is to incorporate the soil data derived in Chapter 5 with ancillary information
(ECa and elevation data) using regression-kriging to provide a more accurate and finer resolution
understanding of the within-vineyard environment.  A range of approaches to regression analysis
will be investigated to evaluate their effectiveness for vineyard soil survey data.

6.2 Methodologies

6.2.1 Survey Sites

The vineyards used in this study are the same as those described previously in section 5.2.1.  Due to
the constraints with data (see §6.2.3) only 77 and 212 sites were used for Pokolbin and Canowindra
respectively.  All sites were used for Cowra.

6.2.2 Soil Survey Data

The soil survey data was analysed as described in section 5.2.2.  For this study only three soil vari-
ables were examined; 0-30 cm clay%, 0-90 cm clay% and RAWW.  As RAWW is the current industry
standard it was preferred in this study to the alternate RAWq estimation described in Chapter 5.

6.2.3 Ancillary Data

In 1991 a registered surveyor, using a theodolite, conducted an elevation survey of  the Cowra vine-
yard.  Approximately 3000 height measurements were taken over the vineyard site.  The elevation of
the Pokolbin and Canowindra vineyards was mapped with an AshTech RTK-GPS mounted on a
4WD vehicle.

The three vineyards were mapped for apparent soil electrical conductivity (ECa) using the Veris
3100Ò soil electrical conductivity cart.  This provided a measurement of the topsoil (~0-30 cm),
subsoil (~30-90 cm) and whole profile (~0-90 cm) ECa.  The vineyards were mapped on ~12 m
swaths along the rows.  Problems occurred in the Canowindra and Pokolbin vineyards with the use of
the Veris 3100®.  The Pokolbin vineyard was under redevelopment at the time of  the Veris survey
and some blocks were unable to be mapped.  An attempt to map the Canowindra vineyard was made
in 2002 however the soil was too dry and the machine unresponsive.  This is a known drawback of
direct current ECa instruments (Dabas et al., 2003).  In 2003 parts of  the vineyard were inaccessible
at the time of  surveying due to late pruning.

6.2.4 Validation Sites

The fifteen validation sites used in Chapter 5 were again used as an independent validation set for
this study.  Validation site selection, sampling and soil analysis is described in section 5.2.4.  Due to
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the missing ancillary data at both Pokolbin and Canowindra only 12 and 11 of  the validation sites
could be used respectively.  All 15 sites at Cowra were used.

6.2.5 Ordinary Kriging and DTM attribute derivation

Soil survey data was interpolated using punctual ordinary kriging with a global variogram in Vesper
(Minasny et al., 2002), onto the 3m x 3m grids used previously.  The grids for Canowindra and
Pokolbin were trimmed to areas covered by the ancillary data (particularly the Veris data).

The primary ancillary datasets (elevation and Veris 3100 data) were trimmed of  any outliers by
visually plotting a histogram of  distribution and manually removing extreme values.  For the Veris
data a distribution of  the raw data was used while for the AshTech data the RMSE associated with
the measurement was used.  The contracted surveyed elevation data was not trimmed.  The ancillary
data was interpolated using block kriging in Vesper onto the same 3m x 3m grid used above with a
local exponential variogram structure.

The ordinary kriged elevation data for each vineyard was imported into Arc/INFO  and converted
into a “grd” file. Using standard Arc/INFO  commands primary landform attributes were derived at
each grid node including aspect, slope, flow direction, upslope and downslope flow, planar and pro-
file curvature and flow accumulation.  From the primary attributes the secondary landform attribute,
topographic wetness index (twi) (Moore et al., 1991) was derived.  The landform attributes were
mapped in ArcGIS  and the upslope flow, downslope flow and twi found to be nonsenscical.  The
elevation surveys were confined to the vineyard thus no external information on the surrounding
landform was available.  These three digital terrain model (DTM) attributes require information on
the locality of  the vineyard in the landscape to be effective.  Without this information the vineyard
boundary is an effective zero point and erroneous results ensue.  Upslope and downslope flow and
twi were removed which left eleven ancillary variables; Veris ECa 0-30 cm, Veris ECa 0-90 cm, Veris
ECa 30-90 cm, elevation, aspect, slope, flow direction, profile curvature,  planar curvature, Eastings
and Northings.

The ancillary landform data was extracted to the 3m x 3m interpolation grid using the “Pixel to
ASCII” function in ERDAS IMAGINE (Erdas LLC, 2002) and combined with the interpolated
Veris data to form an “interpolation” set.  Similarly the landform attributes and Veris data were
extracted to the soil survey sites.  This was combined with the measured and PTF manipulated soil
data to form a “regression” dataset that was used to derive all the regression models.  The ancillary
data was also extracted to the validation sites and combined with the laboratory measured soil prop-
erties to form a “validation” set.

The derived DTM attributes and interpolated Veris data was imported into ArcGIS  and mapped for
each vineyard.

6.2.6 Regression Kriging

Regression kriging (RK) is a multivariate interpolation approach that, as the name suggests, com-
bines kriging with regression analysis. The approach was initially developed and applied in hydrosciences
(Delhomme, 1974, 1978 in Knotters et al., 1995) and later in soil science by Knotters et al., (1995)
and Odeh et al., (1995).  Regression kriging recognizes that the realization of an intrinsic random
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function, Z(x), is uncertain and this uncertainty is expressed as

)()()( ixixzxZ ε+= Equation 6.1

where Z(x) is the intrinsic random function, z(xi) is the true value and ε(xi) is the residual error that
represents the uncertainty in the system.  This uncertainty may not necessarily be due entirely to the
result of  the regression prediction but also to other factors e.g. measurement error (Knotters et al.,
1995) and the broader term “kriging with uncertain data” has been suggested (Ahmed and DeMarsily,
1987).  The residual errors, ε(xi),  are assumed to be unsystematic, uncorrelated among themselves
and uncorrelated with the variables.  Initially the residual errors were incorporated into the ordinary
kriging system by replacing the variances in the diagonal of the A matrix and the kriging equation
was subsequently modified.

In situations where the ancillary variables are known at all the prediction points Odeh et al. (1995)
have proposed an alternative approach which does not need modification of the A matrix.  The
regression model is established and the residuals extracted.  The model is applied to the ancillary
variables at each point on the raster to form an initial prediction.  The residuals are kriged onto the
raster and summed with the initial prediction to get a final prediction.  This process is shown in
Figure 6.1.

As for any regression analysis care must be taken to avoid co-linearity within the variables.  This can
be minimised through stepwise procedures or the  application of a factor analysis to produce com-
posite indices or Principal Components for use in the regression model (Hengl et al., 2004).

6.2.6.1 Models

Regression kriging may utilise a wide variety of different regression methodologies and three differ-
ent techniques have been used in this study to identify a preferred approach.  These techniques are,
Linear Regression, Generalized Additive Models and Neural Networks.

Multiple Linear and Stepwise linear regression (MLR/SLR):  This approach utilises linear relationships to
try and model the predictor variables to the dependent or target variable.  Many of the variables used
in the model may be strongly correlated, e.g. 0-90 cm ECa and 30-90 cm ECa or DTM attributes, or
not correlated at all to the target variable and therefore redundant in the model.  Multiple linear
regression (MLR) was first run using all variables in the model.  Stepwise linear regression (SLR) is a
technique that allows the removal of ineffective predictor variables from the model to improve the
parsimony of the model.  A model is initially defined and then an iterative process of adding or
subtracting predictor variables from the model and assessing the impact on the model against some
assigned criteria is employed to remove ineffectual predictor variables (SAS institute Inc., 2002).
SLR was performed in JMP® using a mixed model approach (i.e. both forward and backward step-
ping) with all variables initially entered in the model.

The data used was not transformed as the landform variables did not exhibit skewed distributions.
Hengl et al. (2004) have proposed that logit transformation is required for landform variables how-
ever the problematic variables, upslope/downslope areas and secondary DTM attributes such as twi,
are not used in this study.
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Generalised Additive Model (GAM):  The purpose of generalized additive models is to maximize the
quality of prediction of a dependent variable from various distributions, by estimating unspecific
(non-parametric) functions, often smoothing splines or loess (local regression), of the predictor vari-
ables that are “connected” to the dependent variable via a link function (SAS institute Inc., 2002).
They are a melding of  traditional additive models and generalized linear models.  For further infor-
mation on GAM readers are directed to Hastie and Tibshirani (1990).

The GAM analysis was performed in S-PLUS with three different approaches.  Initially the model
was run with all parameters (GAMall) using smoothing splines functions only.  A stepwise GAM
analysis (sGAM) in S-PLUS was then employed to improve model parsimony and avoid over-
parameterisation that can be problematic in non-parametric techniques.  All variables were entered
and modeled either linearly, as smoothing splines or removed from the analysis.  Minimisation of  the
Akaike Information Criteria (AIC) was used to identify the best model.  An alternative approach to
avoiding over-parameterisation is the use of principal component analysis (PCA).  PCA was per-
formed in JMP® on 9 of  the ancillary variables (Eastings and Northings were excluded from the
PCA) and 9 principal components stored.  A Stepwise GAM analysis (sGAMpca), as described above,
was run using the 9 principal components and Eastings and Northings as input variables.

Neural Network Analysis (NNA):  NNA is an alternative method of fitting the predictor variables to
the target variable non-parametrically.  It is a method that seeks to simulate the human learning
process using linear and S-shaped functions (SAS Institute Inc., 2002).  The NNA was performed in
JMP® using one layer with 3 hidden nodes.  The NNA model was initially run with all parameters
(NNAall) and subsequently using the output from the PCA  (NNApca). Unlike the GAM approach a
stepwise reduction of parameters was not available for NNA.  Instead a correlation analysis was
performed and the principal components which had a correlation of  >0.1 or <-0.1 with a particular
dependent soil property were chosen in the NNApca model for that particular soil property.

6.2.6.2 Interpolation

Seven different models were tried for regression kriging of soil property prediction; Multiple linear
regression (MLR), Stepwise linear regression (SLR), GAM with all parameters (GAMall), Stepwise
GAM (sGAM), Stepwise GAM using PCA outputs (sGAMpca), NNA with all parameters (NNAall)
and NNA with PCA (NNApca).  In addition the results from ordinary kriging (OK) (from Chapter 5)

Regression of target 
variable (Z) with 
ancillary variables

Regression Model predicts 
Z on a fine grid where 
ancillary data is known

Model Residuals (ε) are 
ordinary kriged onto the 
same grid as the ancillary 
data

Predicted values of 
target variables 
(Zpr*)

Kriged values of the 
residuals (ε*)

Summation
(Zpr* + ε*)

Final Prediction 
(Z*)

Regression of target 
variable (Z) with 
ancillary variables

Regression Model predicts 
Z on a fine grid where 
ancillary data is known

Model Residuals (ε) are 
ordinary kriged onto the 
same grid as the ancillary 
data

Predicted values of 
target variables 
(Zpr*)

Kriged values of the 
residuals (ε*)

Summation
(Zpr* + ε*)

Final Prediction 
(Z*)

Figure 6.1: Steps involved in the regression kriging approach of Odeh et al. (1995) (adapted
from Odeh et al, 1995)
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were also included for discussion.

Regression equations were derived for each soil property for each approach using the “regression”
dataset based on the soil survey points.  The regression equations for each approach are given in
Appendix 1 and the fit of  the models shown in Table 6.1.  The regression equations were applied to
the prediction set to form an initial prediction (Zpr

*
) across the vineyard.  The residuals from the

models were extracted and kriged onto the prediction grid using punctual ordinary kriging with a
global variogram in Vesper (Minasny et al., 2002)  The interpolated residuals (e*) were then added to
(Zpr

*
) to form the final prediction (Z

*
).  This process was repeated with the “validation” set to form

a prediction for each soil property at the validation sites.

Results of the fit of the models and the validation data are presented as r
2
 values and RMSE. The r

2

and RMSE for the regression models were ranked and an analyses of the mean rank vs standard
deviation of  rank performed (Laslett et al., 1987)

6.3 Results and Discussion

6.3.1 Fit of Models

Table 6.1 gives details of  the fits of  the regression models.   In general the linear regression (MLR and
SLR) produced the worst fits, the neural network approaches (NNA, NNApca) the best and the
GAM models (GAMall, sGAM and sGAMall) were inbetween.  This is expected and reflects the
complexities of the models used to fit the “regression” dataset.

6.3.2 Validation of  Models

The r2 and RMSE values for the three vineyards are given individually  in Appendix  6.3.  The full
model outputs have been ranked from 1 to 7 in order of best fit and the summed ranking is presented
in Appendix 2.  Table 6.1 presents r2 and RMSE statistics for the combined data from  all three
vineyards.  Maps of  all soil properties for each vineyard are shown in Appendix  3.

The rankings of the r2 and RMSE values for all the models (Appendix  6.1)  were very similar indicat-
ing that they are providing similar information on the fit of  the data.  Given this the following
discussion will focus on the RMSE statistic.

The Neural Network methods produced the largest RMSE results for topsoil and subsoil clay estima-
tion at both Cowra and Pokolbin.  In contrast, at  Canowindra they produced the best fit to the
validation data however, when mapped, the data is noisy. In general the patterns observed in the NN
maps were less spatially coherent and did not always follow the trend shown in the OK maps.   The
NNA and NNApca models also tended to produce over- and  under-predictions in the datasets,
particularly for Pokolbin.  The large inconsistency in the response from the NN models (high stand-
ard deviation of ranking in Figure 6.2) would also indicate that Neural Networks are unsuited in this
situation for combining soil and ancillary data in vineyards.  Neural networks require an extensive
training set for accurate results and there may be insufficient data in the regression datasets.  Little
emphasis was put on the analysis and different permutations of  layers and nodes were not tried
which, if attempted, may have helped to improve the final fit.  Neural Networks have been used
successfully previously for field-scale studies (McBratney et al., 2000) however results from these
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the data from the three vineyards are combined the sGAMpca produced the best fit for two of the
three soil variables (30 cm clay and RAW).  SLR produced the best combined fit for 30-90 cm clay.
On this basis the  sGAMpca approach is considered to be the preferred method for regression kriging
mapping of vineyard soil data.

6.3.3 Regression Kriging  vs Ordinary Kriging

A comparison of the final maps from OK and RK (sGAMpca) are shown in Figures 6.3 - 6.5.  In this
study the OK approach produced lower RMSE than the sGAMpca RK method for all soil properties
in the combined data set (Table 6.1).  This contrasts with previous studies (Odeh et al., 1995, Bishop
and McBratney, 2001, Knotters et al., 1995 and Goovaerts, 1999) who all reported improved predic-
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Figure 6.2 Plot of Mean Rank against the
Standard deviation of Ranks for the seven
regression kriging models used in this study.

three vineyards indicate that NNA is not suit-
able in vineyards.

The MLR and GAMall models, where all data
layers were incorporated into the model, pro-
duced the highest mean ranks (Figure 6.2).  In
contrast the stepwise GAM and SLR ap-
proaches produced the three best mean rank
results.  The NNApca model was also superior
to the NNA model with all parameters in-
cluded.  This emphasises the need for data re-
duction in these models to avoid over-
parametising and co-linearity between vari-
ables.  From Figure 6.2 the sGAM and
sGAMpca produced the two lowest mean ranks
with the sGAMpca marginally better.  The SLR
model showed the most consistent response of
the models (lowest standard deviation).  When

r2 RMSE
Clay% Clay% RAW Clay 30 Clay 90 RAW
(0-30cm) (30-90cm) (mm) (0-30cm) (30-90cm) (mm)

Combined  (n=38)
MLR 0.578 0.120 0.034 7.984 13.354 9.475
SLR 0.624 0.205 0.050 7.542 12.691 9.349
NN 0.438 0.000 0.055 9.215 14.233 9.370
Nnpca 0.093 0.088 0.021 11.708 13.590 9.539
GAMall 0.556 0.024 0.051 8.191 14.062 9.391
sGAM 0.469 0.111 0.051 8.955 13.424 9.390
sGAMpca 0.652 0.060 0.190 7.251 13.797 8.677
OK 0.763 0.544 0.236 5.980 9.615 8.427

Table 6.1:  Combined r2 and RMSE of  RK model responses to soil properties (topsoil clay%,
subsoili clay% and RAW (mm)) for the  soil  validation data from Pokolbin, Canowindra and
Cowra vineyards  dataset from all vineyards.
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Figure 6.3:  Predicted maps at Cowra for RAW (top), 0-30cm Clay% (middle) and 30-90cm
Clay% (bottom) using OK (LHS) and sGAMpca RK (RHS).
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Figure 6.4:  Predicted maps at Canowindra for RAW (top), 0-30cm Clay% (middle) and 30-
90cm Clay% (bottom) using OK (LHS) and sGAMpca RK (RHS).
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Figure 6.5:  Predicted maps at Pokolbin for RAW (top), 0-30cm Clay% (middle) and 30-
90cm Clay% (bottom) using OK (LHS) and sGAMpca RK (RHS).
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tions using RK.  There are several possible reasons for the contradictory results in this study:

i) Vineyard surveys are more intensive than the studies used previously for comparisons of  RK and
OK.  The RMSE of  RK prediction for clay was similar to that observed by McBratney et al. (2000)
and it appears that the denser data favours OK especially when the soil survey sites are not site
directed (see below)

ii) The mixture of  field and laboratory measurements used for the soil survey and the validation set
may also have introduced some error and bias in the analysis.  The influence of  the different method-
ologies could be eliminated by jack-knifing or boot-strapping (Bishop, 2003) the soil survey data to
produce a validation set.

iii) The OK approach maintained predicted values within the range of  the original soil survey data
and showed the broad trends in the data.  The regression predictions had a range greater than the soil
survey data.  A  problem with the methodology used is that the soil surveys were done independently
of  the ancillary surveys.  As a result the soil survey locations were not directed to account for the
variation observed in the ancillary data.  In practice, ancillary data is usually collected prior to the
soil survey.  If  a site-directed approach is used for some of  the soil sites, to account for the range of
variability in the ancillary data, then the data range of the regression predictions should approach
that of  the soil survey and improve predictions.

While the RMSE is higher the RK methodologies did produce more detail in the final maps.  How-
ever the validity of  the extra detail needs to be questioned especially given the higher RMSE values.
Certainly there are some artifacts in the maps from the presence of erroneous data in the original
ancillary data.  However this extra detail may help to better design the vineyard layout even if the
accuracy of  prediction within the blocks is lower.  Correctly defining the areas of  similarity within
the natural environment (or digital terroirs) is as important, if  not more so, than properly measuring
the environment within these “digital terroirs”.  In the case of the Cowra vineyard it appears that the
extra detail is unlikely to help improve vineyard design greatly.  No new soil features were uncovered.
Soil boundaries have possibly been more accurately defined but given the size of blocks and other
constraints to vineyard design (sucha s roads and waterways) this may have little effect on the final
design.  The strong catenary patterns in this vineyard mean regression kriging has little advantage
over ordinary kriging.   However in more soil heterogeneous vineyards regression kriging may provide
better information for vineyard design.  Certainly in the Canowindra vineyard there is a lot more
detail in the soil texture maps derived from sGAMpca analysis.  The Pokolbin vineyard also demon-
strates more variability in the RK maps.

The RMSE statistic does not help us identify if the OK interpolation is properly defining soil/
environmental boundaries.  Since the object of  vineyard design is to minimise variability within
blocks the best indication of whether or not a vineyard has been well designed is to investigate the
vines response within the block. Unfortunately this data is not usually available when designing
vineyards, unless the vineyard is being redeveloped.  However vine response, in the form of  canopy
imagery and yield monitoring,  can be used to test the validity of digital terroir predictions in existing
vineyards.

Regression kriging with a Stepwise GAM model using Principal Components was found to be the



160

C
H

A
PT

E
R
 V

I
V

IN
E

Y
A

R
D
 M

A
P

P
IN

G
 W

IT
H

 R
E

G
R

E
S

S
IO

N
 K

R
IG

IN
G

Precision Viticulture and Digital Terroirs:
Investigations into the application of information technology in Australian vineyards

best model for regression kriging.  However several other models and ‘hybrid’ geo-statistical ap-
proaches were not tried and should be tested in future studies.  Co-kriging has been found to be
inferior to RK (Odeh et al., 1995, McBratney et al., 2000) however should be tested to validate this.
Alternative regression models such as Generalised Linear Models (GLM) and Regression Trees have
not been tested.

6.4 Conclusions

The aim of  this study was to try and incorporate ancillary data with traditional soil survey data to
improve our knowledge of soil properties prior to vineyard design.  The replacement of ordinary
kriging with regression kriging produced more detail in the maps however the models produced
inferior fits to the ordinary kriging when compared to the validation dataset.  Over-parametrisation
was a problem in the models and the best result from the regression kriging results were produced
from stepwise models (SLR, sGAM and sGAMpca).  The soil survey was also done independently of
the ancillary data and there may be discrepancies in the spatial variability between the soil and
ancillary data that is contributing to the poor RK responses.  In new vineyards, the soil sampling
should reflect the information in the ancillary data and thus the soil and ancillary datasets should be
more complimentary.

The RK methodology is a fairly complex geostatistical approach.  In this regard it is not easily adopted
by a lay person.  In this regard the methodology is limited to those with access to data analysts with
a geostatistical background.  Currently these people are in short supply in the agriculture sector
however with an increased demand this niche should be filled.  Also, similar to OK, the RK method-
ology requires a certain number of  data (>70 data points), thus is suited to larger vineyards.

The validity of  the extra detail in the RK maps for defining “digital terroirs” is still unclear.  This will
be investigated in the next chapter using aerial imagery and yield maps.
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Appendix 6.1 - Regression Equations

For the GAMall approach the same equations was used for each Vineyard.  The Neural Network
equations are not given.  Due to nodal equations these are quite convoluted and the failure of the
approach makes them some what irrelevant.  For the other approaches, the regression  model   equations
are listed under the vineyard.

Universal equations

GAMall
Clay30 ~ s(V30) + s(V90) + s(V3090) + s(elevation) + s(aspect) + s(slope) + s( X) + s(planc) +
s(profc) + s(Y)
Clay90 ~ s(V30) + s(V90) + s(V3090) + s(elevation) + s(aspect) + s(slope) + s( X) + s(planc) +
s(profc) + s(Y)
RZRAW ~ s(V30) + s(V90) + s(V3090) + s(elevation) + s(aspect) + s(slope) + s(X) + s(planc) +
s(profc) + s(Y)

Cowra

MLR
0-30cm Clay% = (-7288.21173902268) + -0.00335647046281367 *  :X + 0.00151318743250676
*  :Y + 0.152715645393666 *  :elevation + 0.0123004318388898 *  :aspect + -0.687268425821615
*  :slope + -0.00295744168475389 *  :flowd + 3.4344074069128 *  :profc + -0.576852157592946
*  :planc + 0.0739547080504255 *  :V30 + 0.823906731797491 *  :V90 + -0.454776999195015 *
:V3090

30-90cm Clay% = (-11103.298932487) + -0.000872280922562966 *  :X + 0.00187087640990793
*  :Y + 0.0260071955311905 *  :elevation + 0.00819630576449054 *  :aspect + 0.482284261946008
*  :slope + 0.0007915141694789 *  :flowd + -5.22867842007033 *  :profc + -1.65449779399077 *
:planc + -0.0544470167858797 *  :V30 + -0.0243104875124756 *  :V90 + 0.175485320121808 *
:V3090

RAW = 21323.6852143531 + 0.00922587000827356 *  :X + -0.00433534348959897 *  :Y + -
0.698340743126899 *  :elevation + -0.00558852683677011 *  :aspect + -1.91231669463404 *
:slope + 0.0197635828710486 *  :flowd + 10.7642182065199 *  :profc + 0.773474118764151 *
:planc + 0.313249731404086 *  :V30 + -1.19599758007894 *  :V90 + 0.535722524126046 *
:V3090

SLR
0-30cm Clay% = 2034.41603437609 + -0.00313353905520471 *  :X + 0.114008339008906 *
:elevation + 0.013873940342518 *  :aspect + -0.689856545937654 *  :slope + 0.966289600004594
*  :V90 + -0.548027045187141 *  :V3090

30-90cm Clay% = (-10449.2062139997) + 0.00167589775609224 *  :Y + 0.00761936717569967
*  :aspect + 0.548318734289852 *  :slope + -4.01100409069783 *  :profc + 0.153496324582221 *
:V3090
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RAW = 22306.9824166719 + 0.00912925271696523 *  :X + -0.00448285315242564 *  :Y + -
0.69596510860798 *  :elevation + -1.94338264072288 *  :slope + 0.0302756476250088 *  :flowd
+ 10.0671127031632 *  :profc + -0.386601649691214 *  :V90

sGAM
Clay30 ~ aspect + s(slope) + s(planc) + V90 + s(V3090) + X
Clay90 ~ s(elevation) + aspect + s(slope) + s(V90)
RZRAW ~ elevation + slope + s(planc) + profc + s(V30) + V90 + X + Y

sGAMpca
Clay30 ~ s(Prin1) + s(Prin2) + s(Prin4)
Clay90 ~ s(Prin1) + Prin2 + s(Prin3) + Prin4 + Prin7 + Prin8
RZRAW ~ s(Prin1) + Prin2 + s(Prin3) + Prin4 + Prin7 + X

Canowindra

MLR
0-30cm Clay% = (-10272.7579084567) + 0.00344526346602669 *  :X + 0.00128018858051144 *
:Y + 0.0456885246798395 *  :elevation + -0.00407035576973728 *  :aspect + 0.353758750961685
*  :slope + -0.00247288646293319 *  :flowd + 1.88226350877652 *  :profc + 2.20089571127647
*  :planc + -0.335666290073337 *  :V30 + 2.64885554007646 *  :V90 + -1.9124663528251 *
:V3090

30-90cm Clay% = (-4424.44051912363) + 0.00314235767955931 *  :X + 0.000385805796456219
*  :Y + -0.018390210142314 *  :elevation + -0.00424699308811194 *  :aspect + -0.19557610488601
*  :slope + -0.00269425721509297 *  :flowd + -0.856099563239785 *  :profc + 3.40449305949756
*  :planc + 0.166036454899804 *  :V30 + -0.202725808092715 *  :V90 + 0.200156091684391 *
:V3090

RAW = (-6626.91104092006) + -0.000381199443699272 *  :X + 0.00111895778665659 *  :Y + -
0.347522905825029 *  :elevation + 0.00190555387691101 *  :aspect + 0.2063004701625 *  :slope
+ 0.0206647427700119 *  :flowd + 0.551091276980998 *  :profc + 2.86200280727824 *  :planc +
0.425934687960023 *  :V30 + -1.93728288568341 *  :V90 + 1.51244439765821 *  :V3090

SLR
0-30cm Clay% = (-3332.23302190107) + 0.00517113181553377 *  :X + 1.82575709097714 *
:V90 + -1.38589957640295 *  :V3090

30-90cm Clay% = (-2529.46003528479) + 0.00394733114358254 *  :X + 4.07204921933393 *
:planc + 0.0775612533257957 *  :V3090

RAW = 166.275161420507 + -0.372178315672615 *  :elevation + 0.175245576546392 *  :V3090

sGAM
Clay30 ~ elevation + V90 + V3090 + s(Y)
Clay90 ~ elevation + aspect + s(planc) + s(Y)
RZRAW ~ elevation + s(profc) + V3090 + s(Y)
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sGAMpca
Clay30 ~ Prin1 + Prin2 + Prin4 + Prin5 + s(Y)
Clay90 ~ s(Prin3) + s(Prin4) + X
RZRAW ~ Prin1 + Prin2 + Prin5 + s(Prin7)

Pokolbin

MLR
0-30cm Clay% = (-237437.316896067) + -0.509737853442759 *  :elevation + -
0.00061561162058188 *  :aspect + 0.906139318717722 *  :slope + -0.0263140901010238 *  :flowd
+ 1.82946317059815 *  :profc + 0.593829501483071 *  :planc + -0.196627750759402 *  :V30 +
0.184114928880525 *  :V90 + -0.0717659658431589 *  :V3090 + -0.00283016498747716 *  :X +
0.0373984643270482 *  :Y

30-90cm Clay% = (-207177.941213001) + -0.468498655502209 *  :elevation +
0.0066126445486503 *  :aspect + 1.79588670469082 *  :slope + 0.0338505358179851 *  :flowd +
1.18204397840833 *  :profc + 4.64501999714331 *  :planc + -0.0652692704278525 *  :V30 +
0.316600477201543 *  :V90 + -0.233055499717982 *  :V3090 + -0.00318629482737473 *  :X +
0.0326704762373793 *  :Y

RAW = 45181.9454477285 + -0.0300962996746195 *  :elevation + -0.021177327557501 *  :aspect
+ 1.21222475146004 *  :slope + -0.0163392372706334 *  :flowd + 0.906161372964967 *  :profc
+ -6.86554039457406 *  :planc + -0.135592471619576 *  :V30 + -0.309813186779561 *  :V90 +
0.289963475734334 *  :V3090 + 0.00582232787526414 *  :X + -0.00738456473124274 *  :Y

SLR
0-30cm Clay% = (-239464.85917179) + 0.0375662270691156 *  :Y + -0.449103292792099 *
:elevation + 0.981316757887239 *  :slope + -0.0316010884841454 *  :flowd + -0.158593044132458
*  :V30 + 0.0740260391802708 *  :V90

30-90cm Clay% = (-211726.822582739) + 0.0332149070877793 *  :Y + -0.403892177869599 *
:elevation + 1.89797086645907 *  :slope + 3.6295155735105 *  :planc

RAW = (-2970.12034532094) + 0.00896915563813847 *  :X + 0.97139490512123 *  :slope + -
7.01889914856742 *  :planc + -0.247379092350317 *  :V30 + 0.0829533893122906 *  :V3090

sGAM
Clay30 ~ elevation + s(Y)
Clay90 ~ s(elevation) + X
RZRAW ~ s(elevation) + s(slope) + V90 + V3090

sGAMpca
Clay30 ~ s(Prin4) + s(Y)
Clay90 ~ s(Prin3) + s(Prin4) + X
RZRAW ~ Prin1 + Prin2 + Prin5 + s(Prin7)
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Clay% Clay% RAW Clay Clay RAW
0-30cm 30-90cm (mm/cm) 0-30cm 30-90cm (mm/cm)

Cowra (n=15)
MLR 0.552 0.466 0.463 4.960 3.792 8.148
SLR 0.548 0.463 0.460 4.985 3.805 8.171
NNA 0.798 0.721 0.675 3.334 2.742 6.336
NNAPCA 0.667 0.612 0.608 4.281 3.234 6.960
GAMall 0.679 0.617 0.585 4.205 3.218 7.172
SGAM 0.502 0.580 0.519 13.111 3.367 7.715
SGAMPCA 0.521 0.617 0.514 13.074 3.218 7.753

Canowindra (n=11)
MLR 0.101 0.078 0.114 5.35 4.67 9.13
SLR 0.90 0.066 0.110 5.38 4.70 9.15
NNA 0.457 0.404 0.384 4.16 3.76 5.86
NNAPCA 0.132 0.168 0.270 5.25 4.44 8.29
GAMall 0.265 0.257 0.302 4.86 4.25 8.15
SGAM 0.124 0.102 0.110 5.28 4.62 9.15
SGAMPCA 0.115 0.100 0.130 5.31 4.62 9.06

Pokolbin (n=12)
MLR 0.320 0.444 0.147 9.25 7.94 13.56
SLR 0.324 0.420 0.126 9.29 8.11 13.73
NNA 0.972 0.983 0.867 1.88 1.40 5.36
NNAPCA 0.467 0.883 0.711 8.25 3.64 7.89
GAMall 0.704 0.710 0.711 6.26 5.77 8.24
SGAM 0.462 0.569 0.419 8.30 7.02 11.31
SGAMPCA 0.554 0.549 0.458 7.62 7.15 10.98

Appendix 6.2 - Fits (r2 and RMSE) of Regression Models to the
‘Regression’ dataset
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r2 RMSE
Clay% Clay% RAW Clay 30 Clay 90 RAW
(0-30cm) (30-90cm) (mm) (0-30cm) (30-90cm) (mm)

Cowra
MLR 0.5285 0.4691 0.1786 5.4215 7.1311 8.5016

SLR 0.5914 0.4602 0.2134 5.0484 7.1922 8.3154

NNA 0.2177 0.4007 0.3341 6.9867 7.5807 7.6521

NNApca 0.3246 0.4275 0.2183 6.4886 7.4066 8.2903

GAMall 0.6013 0.4306 0.1267 4.9843 7.3925 8.7657

sGAM 0.7351 0.4314 0.2045 4.0641 7.3834 8.3645

sGAMpca 0.7012 0.4403 0.2322 4.3192 7.3243 8.2152

OK 0.731 0.426 0.265 4.097 7.418 8.035

Canowindra
MLR 0.0854 0.1117 0.0154 5.7004 15.5727 9.3534

SLR 0.0696 0.1175 0.0193 5.7506 15.5256 9.3343

NNA 0.3232 0.3562 0.1351 4.9032 13.2562 8.7651

NNApca 0.3431 0.4381 0.0312 4.8291 12.3851 9.2732

GAMall 0.0755 0.1175 0.0026 5.7305 15.5185 9.4146

sGAM 0.1103 0.1653 0.0017 5.6213 15.0943 9.4167

sGAMpca 0.0457 0.1524 0.0115 5.8227 15.2124 9.3685

OK 0.751 0.265 0.179 2.973 14.165 8.537

Pokolbin
MLR 0.1115 0.3573 0.0086 12.1075 11.7643 9.8246

SLR 0.2294 0.7352 0.0473 11.2794 7.5572 9.6323

NNA 0.0766 0.0247 0.0174 12.3457 14.4927 9.7824

NNApca 0.0837 0.0276 0.0135 12.3016 14.4776 9.8015

GAMall 0.5991 0.2435 0.0037 8.1361 12.7655 9.8537

sGAM 0.4382 0.3474 0.1241 9.6272 11.8524 9.2341

sGAMpca 0.3993 0.8521 0.0482 9.9603 5.6431 9.6272

OK 0.537 0.814 0.032 8.741 6.331 9.704

Appendix 6.3 - Regression Kriging Model Fits (R2 and RMSE) for
Individual Vineyards to the “Validation” dataset


